Page 1 of 2 12 LastLast
Results 1 to 10 of 14

Thread: Ubuntu netbook as a wireless access-point and router

  1. #1
    Join Date
    Jun 2010
    Beans
    17

    Ubuntu netbook as a wireless access-point and router

    I did this on Asus EEE 1005px which has Atheros wireless NIC and which requires ath9k driver. I used Ubuntu 10.10. There are many tutorials which deal with this, but most of them assume that users have older wireless drivers. On older wireless cards it is easier to set master mode. Even the hostapd binary available in Ubuntu apt-repository is not compiled with nl80211 driver support. nl80211 driver support is a primary requirement for the newer drivers. I compiled the ath9k driver for the wireless NIC from the recent source-code available here.

    Note: Finally nl80211 driver support has been added to the hostapd binary available in the repository.

    Hostapd can be installed with this command:

    Code:
     sudo apt-get install hostapd
    So, the following few lines of this tutrial can be skipped. Hop on to the section on hostapd conf file editing.

    Hostapd should be compiled from the sources. Here is the link to get the recent version of hostapd. The following commands can be used to compile it:

    To compile libn-dev package is required:

    Code:
     sudo apt-get install libnl-dev
    To extract and to move into the hostapd directory:

    Code:
    tar xzvf hostapd-x.y.z.tar.gz
    cd hostapd-x.y.z/hostapd
    To enable nl80211 driver support:

    Code:
    cp defconfig .config
    nano .config
    This line should be uncommented like so:
    Code:
    CONFIG_DRIVER_NL80211=y
    Compile and install it:

    Code:
    make
    
    sudo make install
    The conf file did not get installed for me. So I downloaded put it in /etc/hostapd:
    Code:
    sudo mkdir /etc/hostapd
    sudo nano /etc/hostapd/hostapd.conf
    Paste this into it:

    Code:
    ##### hostapd configuration file ##############################################
    # Empty lines and lines starting with # are ignored
    
    # AP netdevice name (without 'ap' postfix, i.e., wlan0 uses wlan0ap for
    # management frames); ath0 for madwifi
    interface=wlan0
    
    # In case of madwifi, atheros, and nl80211 driver interfaces, an additional
    # configuration parameter, bridge, may be used to notify hostapd if the
    # interface is included in a bridge. This parameter is not used with Host AP
    # driver. If the bridge parameter is not set, the drivers will automatically
    # figure out the bridge interface (assuming sysfs is enabled and mounted to
    # /sys) and this parameter may not be needed.
    #
    # For nl80211, this parameter can be used to request the AP interface to be
    # added to the bridge automatically (brctl may refuse to do this before hostapd
    # has been started to change the interface mode). If needed, the bridge
    # interface is also created.
    #bridge=br0
    
    # Driver interface type (hostap/wired/madwifi/test/none/nl80211/bsd);
    # default: hostap). nl80211 is used with all Linux mac80211 drivers.
    # Use driver=none if building hostapd as a standalone RADIUS server that does
    # not control any wireless/wired driver.
    # driver=hostap
    driver=nl80211
    
    # hostapd event logger configuration
    #
    # Two output method: syslog and stdout (only usable if not forking to
    # background).
    #
    # Module bitfield (ORed bitfield of modules that will be logged; -1 = all
    # modules):
    # bit 0 (1) = IEEE 802.11
    # bit 1 (2) = IEEE 802.1X
    # bit 2 (4) = RADIUS
    # bit 3 (8) = WPA
    # bit 4 (16) = driver interface
    # bit 5 (32) = IAPP
    # bit 6 (64) = MLME
    #
    # Levels (minimum value for logged events):
    #  0 = verbose debugging
    #  1 = debugging
    #  2 = informational messages
    #  3 = notification
    #  4 = warning
    #
    logger_syslog=-1
    logger_syslog_level=2
    logger_stdout=-1
    logger_stdout_level=2
    
    # Dump file for state information (on SIGUSR1)
    dump_file=/tmp/hostapd.dump
    
    # Interface for separate control program. If this is specified, hostapd
    # will create this directory and a UNIX domain socket for listening to requests
    # from external programs (CLI/GUI, etc.) for status information and
    # configuration. The socket file will be named based on the interface name, so
    # multiple hostapd processes/interfaces can be run at the same time if more
    # than one interface is used.
    # /var/run/hostapd is the recommended directory for sockets and by default,
    # hostapd_cli will use it when trying to connect with hostapd.
    ctrl_interface=/var/run/hostapd
    
    # Access control for the control interface can be configured by setting the
    # directory to allow only members of a group to use sockets. This way, it is
    # possible to run hostapd as root (since it needs to change network
    # configuration and open raw sockets) and still allow GUI/CLI components to be
    # run as non-root users. However, since the control interface can be used to
    # change the network configuration, this access needs to be protected in many
    # cases. By default, hostapd is configured to use gid 0 (root). If you
    # want to allow non-root users to use the contron interface, add a new group
    # and change this value to match with that group. Add users that should have
    # control interface access to this group.
    #
    # This variable can be a group name or gid.
    #ctrl_interface_group=wheel
    ctrl_interface_group=0
    
    
    ##### IEEE 802.11 related configuration #######################################
    
    # SSID to be used in IEEE 802.11 management frames
    ssid=test
    
    # Country code (ISO/IEC 3166-1). Used to set regulatory domain.
    # Set as needed to indicate country in which device is operating.
    # This can limit available channels and transmit power.
    #country_code=US
    
    # Enable IEEE 802.11d. This advertises the country_code and the set of allowed
    # channels and transmit power levels based on the regulatory limits. The
    # country_code setting must be configured with the correct country for
    # IEEE 802.11d functions.
    # (default: 0 = disabled)
    #ieee80211d=1
    
    # Operation mode (a = IEEE 802.11a, b = IEEE 802.11b, g = IEEE 802.11g,
    # Default: IEEE 802.11b
    hw_mode=g
    
    # Channel number (IEEE 802.11)
    # (default: 0, i.e., not set)
    # Please note that some drivers (e.g., madwifi) do not use this value from
    # hostapd and the channel will need to be configuration separately with
    # iwconfig.
    channel=1
    
    # Beacon interval in kus (1.024 ms) (default: 100; range 15..65535)
    beacon_int=100
    
    # DTIM (delivery trafic information message) period (range 1..255):
    # number of beacons between DTIMs (1 = every beacon includes DTIM element)
    # (default: 2)
    dtim_period=2
    
    # Maximum number of stations allowed in station table. New stations will be
    # rejected after the station table is full. IEEE 802.11 has a limit of 2007
    # different association IDs, so this number should not be larger than that.
    # (default: 2007)
    max_num_sta=255
    
    # RTS/CTS threshold; 2347 = disabled (default); range 0..2347
    # If this field is not included in hostapd.conf, hostapd will not control
    # RTS threshold and 'iwconfig wlan# rts <val>' can be used to set it.
    rts_threshold=2347
    
    # Fragmentation threshold; 2346 = disabled (default); range 256..2346
    # If this field is not included in hostapd.conf, hostapd will not control
    # fragmentation threshold and 'iwconfig wlan# frag <val>' can be used to set
    # it.
    fragm_threshold=2346
    
    # Rate configuration
    # Default is to enable all rates supported by the hardware. This configuration
    # item allows this list be filtered so that only the listed rates will be left
    # in the list. If the list is empty, all rates are used. This list can have
    # entries that are not in the list of rates the hardware supports (such entries
    # are ignored). The entries in this list are in 100 kbps, i.e., 11 Mbps = 110.
    # If this item is present, at least one rate have to be matching with the rates
    # hardware supports.
    # default: use the most common supported rate setting for the selected
    # hw_mode (i.e., this line can be removed from configuration file in most
    # cases)
    #supported_rates=10 20 55 110 60 90 120 180 240 360 480 540
    
    # Basic rate set configuration
    # List of rates (in 100 kbps) that are included in the basic rate set.
    # If this item is not included, usually reasonable default set is used.
    #basic_rates=10 20
    #basic_rates=10 20 55 110
    #basic_rates=60 120 240
    
    # Short Preamble
    # This parameter can be used to enable optional use of short preamble for
    # frames sent at 2 Mbps, 5.5 Mbps, and 11 Mbps to improve network performance.
    # This applies only to IEEE 802.11b-compatible networks and this should only be
    # enabled if the local hardware supports use of short preamble. If any of the
    # associated STAs do not support short preamble, use of short preamble will be
    # disabled (and enabled when such STAs disassociate) dynamically.
    # 0 = do not allow use of short preamble (default)
    # 1 = allow use of short preamble
    #preamble=1
    
    # Station MAC address -based authentication
    # Please note that this kind of access control requires a driver that uses
    # hostapd to take care of management frame processing and as such, this can be
    # used with driver=hostap or driver=nl80211, but not with driver=madwifi.
    # 0 = accept unless in deny list
    # 1 = deny unless in accept list
    # 2 = use external RADIUS server (accept/deny lists are searched first)
    macaddr_acl=0
    
    # Accept/deny lists are read from separate files (containing list of
    # MAC addresses, one per line). Use absolute path name to make sure that the
    # files can be read on SIGHUP configuration reloads.
    #accept_mac_file=/etc/hostapd.accept
    #deny_mac_file=/etc/hostapd.deny
    
    # IEEE 802.11 specifies two authentication algorithms. hostapd can be
    # configured to allow both of these or only one. Open system authentication
    # should be used with IEEE 802.1X.
    # Bit fields of allowed authentication algorithms:
    # bit 0 = Open System Authentication
    # bit 1 = Shared Key Authentication (requires WEP)
    auth_algs=3
    
    # Send empty SSID in beacons and ignore probe request frames that do not
    # specify full SSID, i.e., require stations to know SSID.
    # default: disabled (0)
    # 1 = send empty (length=0) SSID in beacon and ignore probe request for
    #     broadcast SSID
    # 2 = clear SSID (ASCII 0), but keep the original length (this may be required
    #     with some clients that do not support empty SSID) and ignore probe
    #     requests for broadcast SSID
    ignore_broadcast_ssid=0
    
    # TX queue parameters (EDCF / bursting)
    # default for all these fields: not set, use hardware defaults
    # tx_queue_<queue name>_<param>
    # queues: data0, data1, data2, data3, after_beacon, beacon
    #        (data0 is the highest priority queue)
    # parameters:
    #   aifs: AIFS (default 2)
    #   cwmin: cwMin (1, 3, 7, 15, 31, 63, 127, 255, 511, 1023)
    #   cwmax: cwMax (1, 3, 7, 15, 31, 63, 127, 255, 511, 1023); cwMax >= cwMin
    #   burst: maximum length (in milliseconds with precision of up to 0.1 ms) for
    #          bursting
    #
    # Default WMM parameters (IEEE 802.11 draft; 11-03-0504-03-000e):
    # These parameters are used by the access point when transmitting frames
    # to the clients.
    #
    # Low priority / AC_BK = background
    #tx_queue_data3_aifs=7
    #tx_queue_data3_cwmin=15
    #tx_queue_data3_cwmax=1023
    #tx_queue_data3_burst=0
    # Note: for IEEE 802.11b mode: cWmin=31 cWmax=1023 burst=0
    #
    # Normal priority / AC_BE = best effort
    #tx_queue_data2_aifs=3
    #tx_queue_data2_cwmin=15
    #tx_queue_data2_cwmax=63
    #tx_queue_data2_burst=0
    # Note: for IEEE 802.11b mode: cWmin=31 cWmax=127 burst=0
    #
    # High priority / AC_VI = video
    #tx_queue_data1_aifs=1
    #tx_queue_data1_cwmin=7
    #tx_queue_data1_cwmax=15
    #tx_queue_data1_burst=3.0
    # Note: for IEEE 802.11b mode: cWmin=15 cWmax=31 burst=6.0
    #
    # Highest priority / AC_VO = voice
    #tx_queue_data0_aifs=1
    #tx_queue_data0_cwmin=3
    #tx_queue_data0_cwmax=7
    #tx_queue_data0_burst=1.5
    # Note: for IEEE 802.11b mode: cWmin=7 cWmax=15 burst=3.3
    
    # 802.1D Tag (= UP) to AC mappings
    # WMM specifies following mapping of data frames to different ACs. This mapping
    # can be configured using Linux QoS/tc and sch_pktpri.o module.
    # 802.1D Tag    802.1D Designation    Access Category    WMM Designation
    # 1        BK            AC_BK        Background
    # 2        -            AC_BK        Background
    # 0        BE            AC_BE        Best Effort
    # 3        EE            AC_BE        Best Effort
    # 4        CL            AC_VI        Video
    # 5        VI            AC_VI        Video
    # 6        VO            AC_VO        Voice
    # 7        NC            AC_VO        Voice
    # Data frames with no priority information: AC_BE
    # Management frames: AC_VO
    # PS-Poll frames: AC_BE
    
    # Default WMM parameters (IEEE 802.11 draft; 11-03-0504-03-000e):
    # for 802.11a or 802.11g networks
    # These parameters are sent to WMM clients when they associate.
    # The parameters will be used by WMM clients for frames transmitted to the
    # access point.
    #
    # note - txop_limit is in units of 32microseconds
    # note - acm is admission control mandatory flag. 0 = admission control not
    # required, 1 = mandatory
    # note - here cwMin and cmMax are in exponent form. the actual cw value used
    # will be (2^n)-1 where n is the value given here
    #
    wmm_enabled=1
    #
    # WMM-PS Unscheduled Automatic Power Save Delivery [U-APSD]
    # Enable this flag if U-APSD supported outside hostapd (eg., Firmware/driver)
    #uapsd_advertisement_enabled=1
    #
    # Low priority / AC_BK = background
    wmm_ac_bk_cwmin=4
    wmm_ac_bk_cwmax=10
    wmm_ac_bk_aifs=7
    wmm_ac_bk_txop_limit=0
    wmm_ac_bk_acm=0
    # Note: for IEEE 802.11b mode: cWmin=5 cWmax=10
    #
    # Normal priority / AC_BE = best effort
    wmm_ac_be_aifs=3
    wmm_ac_be_cwmin=4
    wmm_ac_be_cwmax=10
    wmm_ac_be_txop_limit=0
    wmm_ac_be_acm=0
    # Note: for IEEE 802.11b mode: cWmin=5 cWmax=7
    #
    # High priority / AC_VI = video
    wmm_ac_vi_aifs=2
    wmm_ac_vi_cwmin=3
    wmm_ac_vi_cwmax=4
    wmm_ac_vi_txop_limit=94
    wmm_ac_vi_acm=0
    # Note: for IEEE 802.11b mode: cWmin=4 cWmax=5 txop_limit=188
    #
    # Highest priority / AC_VO = voice
    wmm_ac_vo_aifs=2
    wmm_ac_vo_cwmin=2
    wmm_ac_vo_cwmax=3
    wmm_ac_vo_txop_limit=47
    wmm_ac_vo_acm=0
    # Note: for IEEE 802.11b mode: cWmin=3 cWmax=4 burst=102
    
    # Static WEP key configuration
    #
    # The key number to use when transmitting.
    # It must be between 0 and 3, and the corresponding key must be set.
    # default: not set
    #wep_default_key=0
    # The WEP keys to use.
    # A key may be a quoted string or unquoted hexadecimal digits.
    # The key length should be 5, 13, or 16 characters, or 10, 26, or 32
    # digits, depending on whether 40-bit (64-bit), 104-bit (128-bit), or
    # 128-bit (152-bit) WEP is used.
    # Only the default key must be supplied; the others are optional.
    # default: not set
    #wep_key0=123456789a
    #wep_key1="vwxyz"
    #wep_key2=0102030405060708090a0b0c0d
    #wep_key3=".2.4.6.8.0.23"
    
    # Station inactivity limit
    #
    # If a station does not send anything in ap_max_inactivity seconds, an
    # empty data frame is sent to it in order to verify whether it is
    # still in range. If this frame is not ACKed, the station will be
    # disassociated and then deauthenticated. This feature is used to
    # clear station table of old entries when the STAs move out of the
    # range.
    #
    # The station can associate again with the AP if it is still in range;
    # this inactivity poll is just used as a nicer way of verifying
    # inactivity; i.e., client will not report broken connection because
    # disassociation frame is not sent immediately without first polling
    # the STA with a data frame.
    # default: 300 (i.e., 5 minutes)
    #ap_max_inactivity=300
    
    # Disassociate stations based on excessive transmission failures or other
    # indications of connection loss. This depends on the driver capabilities and
    # may not be available with all drivers.
    #disassoc_low_ack=1
    
    # Maximum allowed Listen Interval (how many Beacon periods STAs are allowed to
    # remain asleep). Default: 65535 (no limit apart from field size)
    #max_listen_interval=100
    
    # WDS (4-address frame) mode with per-station virtual interfaces
    # (only supported with driver=nl80211)
    # This mode allows associated stations to use 4-address frames to allow layer 2
    # bridging to be used.
    #wds_sta=1
    
    # If bridge parameter is set, the WDS STA interface will be added to the same
    # bridge by default. This can be overridden with the wds_bridge parameter to
    # use a separate bridge.
    #wds_bridge=wds-br0
    
    # Client isolation can be used to prevent low-level bridging of frames between
    # associated stations in the BSS. By default, this bridging is allowed.
    #ap_isolate=1
    
    ##### IEEE 802.11n related configuration ######################################
    
    # ieee80211n: Whether IEEE 802.11n (HT) is enabled
    # 0 = disabled (default)
    # 1 = enabled
    # Note: You will also need to enable WMM for full HT functionality.
    #ieee80211n=1
    
    # ht_capab: HT capabilities (list of flags)
    # LDPC coding capability: [LDPC] = supported
    # Supported channel width set: [HT40-] = both 20 MHz and 40 MHz with secondary
    #    channel below the primary channel; [HT40+] = both 20 MHz and 40 MHz
    #    with secondary channel below the primary channel
    #    (20 MHz only if neither is set)
    #    Note: There are limits on which channels can be used with HT40- and
    #    HT40+. Following table shows the channels that may be available for
    #    HT40- and HT40+ use per IEEE 802.11n Annex J:
    #    freq        HT40-        HT40+
    #    2.4 GHz        5-13        1-7 (1-9 in Europe/Japan)
    #    5 GHz        40,48,56,64    36,44,52,60
    #    (depending on the location, not all of these channels may be available
    #    for use)
    #    Please note that 40 MHz channels may switch their primary and secondary
    #    channels if needed or creation of 40 MHz channel maybe rejected based
    #    on overlapping BSSes. These changes are done automatically when hostapd
    #    is setting up the 40 MHz channel.
    # Spatial Multiplexing (SM) Power Save: [SMPS-STATIC] or [SMPS-DYNAMIC]
    #    (SMPS disabled if neither is set)
    # HT-greenfield: [GF] (disabled if not set)
    # Short GI for 20 MHz: [SHORT-GI-20] (disabled if not set)
    # Short GI for 40 MHz: [SHORT-GI-40] (disabled if not set)
    # Tx STBC: [TX-STBC] (disabled if not set)
    # Rx STBC: [RX-STBC1] (one spatial stream), [RX-STBC12] (one or two spatial
    #    streams), or [RX-STBC123] (one, two, or three spatial streams); Rx STBC
    #    disabled if none of these set
    # HT-delayed Block Ack: [DELAYED-BA] (disabled if not set)
    # Maximum A-MSDU length: [MAX-AMSDU-7935] for 7935 octets (3839 octets if not
    #    set)
    # DSSS/CCK Mode in 40 MHz: [DSSS_CCK-40] = allowed (not allowed if not set)
    # PSMP support: [PSMP] (disabled if not set)
    # L-SIG TXOP protection support: [LSIG-TXOP-PROT] (disabled if not set)
    #ht_capab=[HT40-][SHORT-GI-20][SHORT-GI-40]
    
    ##### IEEE 802.1X-2004 related configuration ##################################
    
    # Require IEEE 802.1X authorization
    #ieee8021x=1
    
    # IEEE 802.1X/EAPOL version
    # hostapd is implemented based on IEEE Std 802.1X-2004 which defines EAPOL
    # version 2. However, there are many client implementations that do not handle
    # the new version number correctly (they seem to drop the frames completely).
    # In order to make hostapd interoperate with these clients, the version number
    # can be set to the older version (1) with this configuration value.
    #eapol_version=2
    
    # Optional displayable message sent with EAP Request-Identity. The first \0
    # in this string will be converted to ASCII-0 (nul). This can be used to
    # separate network info (comma separated list of attribute=value pairs); see,
    # e.g., RFC 4284.
    #eap_message=hello
    #eap_message=hello\0networkid=netw,nasid=foo,portid=0,NAIRealms=example.com
    
    # WEP rekeying (disabled if key lengths are not set or are set to 0)
    # Key lengths for default/broadcast and individual/unicast keys:
    # 5 = 40-bit WEP (also known as 64-bit WEP with 40 secret bits)
    # 13 = 104-bit WEP (also known as 128-bit WEP with 104 secret bits)
    #wep_key_len_broadcast=5
    #wep_key_len_unicast=5
    # Rekeying period in seconds. 0 = do not rekey (i.e., set keys only once)
    #wep_rekey_period=300
    
    # EAPOL-Key index workaround (set bit7) for WinXP Supplicant (needed only if
    # only broadcast keys are used)
    eapol_key_index_workaround=0
    
    # EAP reauthentication period in seconds (default: 3600 seconds; 0 = disable
    # reauthentication).
    #eap_reauth_period=3600
    
    # Use PAE group address (01:80:c2:00:00:03) instead of individual target
    # address when sending EAPOL frames with driver=wired. This is the most common
    # mechanism used in wired authentication, but it also requires that the port
    # is only used by one station.
    #use_pae_group_addr=1
    
    ##### Integrated EAP server ###################################################
    
    # Optionally, hostapd can be configured to use an integrated EAP server
    # to process EAP authentication locally without need for an external RADIUS
    # server. This functionality can be used both as a local authentication server
    # for IEEE 802.1X/EAPOL and as a RADIUS server for other devices.
    
    # Use integrated EAP server instead of external RADIUS authentication
    # server. This is also needed if hostapd is configured to act as a RADIUS
    # authentication server.
    eap_server=0
    
    # Path for EAP server user database
    #eap_user_file=/etc/hostapd.eap_user
    
    # CA certificate (PEM or DER file) for EAP-TLS/PEAP/TTLS
    #ca_cert=/etc/hostapd.ca.pem
    
    # Server certificate (PEM or DER file) for EAP-TLS/PEAP/TTLS
    #server_cert=/etc/hostapd.server.pem
    
    # Private key matching with the server certificate for EAP-TLS/PEAP/TTLS
    # This may point to the same file as server_cert if both certificate and key
    # are included in a single file. PKCS#12 (PFX) file (.p12/.pfx) can also be
    # used by commenting out server_cert and specifying the PFX file as the
    # private_key.
    #private_key=/etc/hostapd.server.prv
    
    # Passphrase for private key
    #private_key_passwd=secret passphrase
    
    # Enable CRL verification.
    # Note: hostapd does not yet support CRL downloading based on CDP. Thus, a
    # valid CRL signed by the CA is required to be included in the ca_cert file.
    # This can be done by using PEM format for CA certificate and CRL and
    # concatenating these into one file. Whenever CRL changes, hostapd needs to be
    # restarted to take the new CRL into use.
    # 0 = do not verify CRLs (default)
    # 1 = check the CRL of the user certificate
    # 2 = check all CRLs in the certificate path
    #check_crl=1
    
    # dh_file: File path to DH/DSA parameters file (in PEM format)
    # This is an optional configuration file for setting parameters for an
    # ephemeral DH key exchange. In most cases, the default RSA authentication does
    # not use this configuration. However, it is possible setup RSA to use
    # ephemeral DH key exchange. In addition, ciphers with DSA keys always use
    # ephemeral DH keys. This can be used to achieve forward secrecy. If the file
    # is in DSA parameters format, it will be automatically converted into DH
    # params. This parameter is required if anonymous EAP-FAST is used.
    # You can generate DH parameters file with OpenSSL, e.g.,
    # "openssl dhparam -out /etc/hostapd.dh.pem 1024"
    #dh_file=/etc/hostapd.dh.pem
    
    # Fragment size for EAP methods
    #fragment_size=1400
    
    # Configuration data for EAP-SIM database/authentication gateway interface.
    # This is a text string in implementation specific format. The example
    # implementation in eap_sim_db.c uses this as the UNIX domain socket name for
    # the HLR/AuC gateway (e.g., hlr_auc_gw). In this case, the path uses "unix:"
    # prefix.
    #eap_sim_db=unix:/tmp/hlr_auc_gw.sock
    
    # Encryption key for EAP-FAST PAC-Opaque values. This key must be a secret,
    # random value. It is configured as a 16-octet value in hex format. It can be
    # generated, e.g., with the following command:
    # od -tx1 -v -N16 /dev/random | colrm 1 8 | tr -d ' '
    #pac_opaque_encr_key=000102030405060708090a0b0c0d0e0f
    
    # EAP-FAST authority identity (A-ID)
    # A-ID indicates the identity of the authority that issues PACs. The A-ID
    # should be unique across all issuing servers. In theory, this is a variable
    # length field, but due to some existing implementations requiring A-ID to be
    # 16 octets in length, it is strongly recommended to use that length for the
    # field to provid interoperability with deployed peer implementations. This
    # field is configured in hex format.
    #eap_fast_a_id=101112131415161718191a1b1c1d1e1f
    
    # EAP-FAST authority identifier information (A-ID-Info)
    # This is a user-friendly name for the A-ID. For example, the enterprise name
    # and server name in a human-readable format. This field is encoded as UTF-8.
    #eap_fast_a_id_info=test server
    
    # Enable/disable different EAP-FAST provisioning modes:
    #0 = provisioning disabled
    #1 = only anonymous provisioning allowed
    #2 = only authenticated provisioning allowed
    #3 = both provisioning modes allowed (default)
    #eap_fast_prov=3
    
    # EAP-FAST PAC-Key lifetime in seconds (hard limit)
    #pac_key_lifetime=604800
    
    # EAP-FAST PAC-Key refresh time in seconds (soft limit on remaining hard
    # limit). The server will generate a new PAC-Key when this number of seconds
    # (or fewer) of the lifetime remains.
    #pac_key_refresh_time=86400
    
    # EAP-SIM and EAP-AKA protected success/failure indication using AT_RESULT_IND
    # (default: 0 = disabled).
    #eap_sim_aka_result_ind=1
    
    # Trusted Network Connect (TNC)
    # If enabled, TNC validation will be required before the peer is allowed to
    # connect. Note: This is only used with EAP-TTLS and EAP-FAST. If any other
    # EAP method is enabled, the peer will be allowed to connect without TNC.
    #tnc=1
    
    
    ##### IEEE 802.11f - Inter-Access Point Protocol (IAPP) #######################
    
    # Interface to be used for IAPP broadcast packets
    #iapp_interface=eth0
    
    
    ##### RADIUS client configuration #############################################
    # for IEEE 802.1X with external Authentication Server, IEEE 802.11
    # authentication with external ACL for MAC addresses, and accounting
    
    # The own IP address of the access point (used as NAS-IP-Address)
    own_ip_addr=127.0.0.1
    
    # Optional NAS-Identifier string for RADIUS messages. When used, this should be
    # a unique to the NAS within the scope of the RADIUS server. For example, a
    # fully qualified domain name can be used here.
    # When using IEEE 802.11r, nas_identifier must be set and must be between 1 and
    # 48 octets long.
    #nas_identifier=ap.example.com
    
    # RADIUS authentication server
    #auth_server_addr=127.0.0.1
    #auth_server_port=1812
    #auth_server_shared_secret=secret
    
    # RADIUS accounting server
    #acct_server_addr=127.0.0.1
    #acct_server_port=1813
    #acct_server_shared_secret=secret
    
    # Secondary RADIUS servers; to be used if primary one does not reply to
    # RADIUS packets. These are optional and there can be more than one secondary
    # server listed.
    #auth_server_addr=127.0.0.2
    #auth_server_port=1812
    #auth_server_shared_secret=secret2
    #
    #acct_server_addr=127.0.0.2
    #acct_server_port=1813
    #acct_server_shared_secret=secret2
    
    # Retry interval for trying to return to the primary RADIUS server (in
    # seconds). RADIUS client code will automatically try to use the next server
    # when the current server is not replying to requests. If this interval is set,
    # primary server will be retried after configured amount of time even if the
    # currently used secondary server is still working.
    #radius_retry_primary_interval=600
    
    
    # Interim accounting update interval
    # If this is set (larger than 0) and acct_server is configured, hostapd will
    # send interim accounting updates every N seconds. Note: if set, this overrides
    # possible Acct-Interim-Interval attribute in Access-Accept message. Thus, this
    # value should not be configured in hostapd.conf, if RADIUS server is used to
    # control the interim interval.
    # This value should not be less 600 (10 minutes) and must not be less than
    # 60 (1 minute).
    #radius_acct_interim_interval=600
    
    # Dynamic VLAN mode; allow RADIUS authentication server to decide which VLAN
    # is used for the stations. This information is parsed from following RADIUS
    # attributes based on RFC 3580 and RFC 2868: Tunnel-Type (value 13 = VLAN),
    # Tunnel-Medium-Type (value 6 = IEEE 802), Tunnel-Private-Group-ID (value
    # VLANID as a string). vlan_file option below must be configured if dynamic
    # VLANs are used. Optionally, the local MAC ACL list (accept_mac_file) can be
    # used to set static client MAC address to VLAN ID mapping.
    # 0 = disabled (default)
    # 1 = option; use default interface if RADIUS server does not include VLAN ID
    # 2 = required; reject authentication if RADIUS server does not include VLAN ID
    #dynamic_vlan=0
    
    # VLAN interface list for dynamic VLAN mode is read from a separate text file.
    # This list is used to map VLAN ID from the RADIUS server to a network
    # interface. Each station is bound to one interface in the same way as with
    # multiple BSSIDs or SSIDs. Each line in this text file is defining a new
    # interface and the line must include VLAN ID and interface name separated by
    # white space (space or tab).
    #vlan_file=/etc/hostapd.vlan
    
    # Interface where 802.1q tagged packets should appear when a RADIUS server is
    # used to determine which VLAN a station is on.  hostapd creates a bridge for
    # each VLAN.  Then hostapd adds a VLAN interface (associated with the interface
    # indicated by 'vlan_tagged_interface') and the appropriate wireless interface
    # to the bridge.
    #vlan_tagged_interface=eth0
    
    
    ##### RADIUS authentication server configuration ##############################
    
    # hostapd can be used as a RADIUS authentication server for other hosts. This
    # requires that the integrated EAP server is also enabled and both
    # authentication services are sharing the same configuration.
    
    # File name of the RADIUS clients configuration for the RADIUS server. If this
    # commented out, RADIUS server is disabled.
    #radius_server_clients=/etc/hostapd.radius_clients
    
    # The UDP port number for the RADIUS authentication server
    #radius_server_auth_port=1812
    
    # Use IPv6 with RADIUS server (IPv4 will also be supported using IPv6 API)
    #radius_server_ipv6=1
    
    
    ##### WPA/IEEE 802.11i configuration ##########################################
    
    # Enable WPA. Setting this variable configures the AP to require WPA (either
    # WPA-PSK or WPA-RADIUS/EAP based on other configuration). For WPA-PSK, either
    # wpa_psk or wpa_passphrase must be set and wpa_key_mgmt must include WPA-PSK.
    # For WPA-RADIUS/EAP, ieee8021x must be set (but without dynamic WEP keys),
    # RADIUS authentication server must be configured, and WPA-EAP must be included
    # in wpa_key_mgmt.
    # This field is a bit field that can be used to enable WPA (IEEE 802.11i/D3.0)
    # and/or WPA2 (full IEEE 802.11i/RSN):
    # bit0 = WPA
    # bit1 = IEEE 802.11i/RSN (WPA2) (dot11RSNAEnabled)
    #wpa=1
    
    # WPA pre-shared keys for WPA-PSK. This can be either entered as a 256-bit
    # secret in hex format (64 hex digits), wpa_psk, or as an ASCII passphrase
    # (8..63 characters) that will be converted to PSK. This conversion uses SSID
    # so the PSK changes when ASCII passphrase is used and the SSID is changed.
    # wpa_psk (dot11RSNAConfigPSKValue)
    # wpa_passphrase (dot11RSNAConfigPSKPassPhrase)
    #wpa_psk=0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef
    #wpa_passphrase=secret passphrase
    
    # Optionally, WPA PSKs can be read from a separate text file (containing list
    # of (PSK,MAC address) pairs. This allows more than one PSK to be configured.
    # Use absolute path name to make sure that the files can be read on SIGHUP
    # configuration reloads.
    #wpa_psk_file=/etc/hostapd.wpa_psk
    
    # Set of accepted key management algorithms (WPA-PSK, WPA-EAP, or both). The
    # entries are separated with a space. WPA-PSK-SHA256 and WPA-EAP-SHA256 can be
    # added to enable SHA256-based stronger algorithms.
    # (dot11RSNAConfigAuthenticationSuitesTable)
    #wpa_key_mgmt=WPA-PSK WPA-EAP
    
    # Set of accepted cipher suites (encryption algorithms) for pairwise keys
    # (unicast packets). This is a space separated list of algorithms:
    # CCMP = AES in Counter mode with CBC-MAC [RFC 3610, IEEE 802.11i/D7.0]
    # TKIP = Temporal Key Integrity Protocol [IEEE 802.11i/D7.0]
    # Group cipher suite (encryption algorithm for broadcast and multicast frames)
    # is automatically selected based on this configuration. If only CCMP is
    # allowed as the pairwise cipher, group cipher will also be CCMP. Otherwise,
    # TKIP will be used as the group cipher.
    # (dot11RSNAConfigPairwiseCiphersTable)
    # Pairwise cipher for WPA (v1) (default: TKIP)
    #wpa_pairwise=TKIP CCMP
    # Pairwise cipher for RSN/WPA2 (default: use wpa_pairwise value)
    #rsn_pairwise=CCMP
    
    # Time interval for rekeying GTK (broadcast/multicast encryption keys) in
    # seconds. (dot11RSNAConfigGroupRekeyTime)
    #wpa_group_rekey=600
    
    # Rekey GTK when any STA that possesses the current GTK is leaving the BSS.
    # (dot11RSNAConfigGroupRekeyStrict)
    #wpa_strict_rekey=1
    
    # Time interval for rekeying GMK (master key used internally to generate GTKs
    # (in seconds).
    #wpa_gmk_rekey=86400
    
    # Maximum lifetime for PTK in seconds. This can be used to enforce rekeying of
    # PTK to mitigate some attacks against TKIP deficiencies.
    #wpa_ptk_rekey=600
    
    # Enable IEEE 802.11i/RSN/WPA2 pre-authentication. This is used to speed up
    # roaming be pre-authenticating IEEE 802.1X/EAP part of the full RSN
    # authentication and key handshake before actually associating with a new AP.
    # (dot11RSNAPreauthenticationEnabled)
    #rsn_preauth=1
    #
    # Space separated list of interfaces from which pre-authentication frames are
    # accepted (e.g., 'eth0' or 'eth0 wlan0wds0'. This list should include all
    # interface that are used for connections to other APs. This could include
    # wired interfaces and WDS links. The normal wireless data interface towards
    # associated stations (e.g., wlan0) should not be added, since
    # pre-authentication is only used with APs other than the currently associated
    # one.
    #rsn_preauth_interfaces=eth0
    
    # peerkey: Whether PeerKey negotiation for direct links (IEEE 802.11e) is
    # allowed. This is only used with RSN/WPA2.
    # 0 = disabled (default)
    # 1 = enabled
    #peerkey=1
    
    # ieee80211w: Whether management frame protection (MFP) is enabled
    # 0 = disabled (default)
    # 1 = optional
    # 2 = required
    #ieee80211w=0
    
    # Association SA Query maximum timeout (in TU = 1.024 ms; for MFP)
    # (maximum time to wait for a SA Query response)
    # dot11AssociationSAQueryMaximumTimeout, 1...4294967295
    #assoc_sa_query_max_timeout=1000
    
    # Association SA Query retry timeout (in TU = 1.024 ms; for MFP)
    # (time between two subsequent SA Query requests)
    # dot11AssociationSAQueryRetryTimeout, 1...4294967295
    #assoc_sa_query_retry_timeout=201
    
    
    # okc: Opportunistic Key Caching (aka Proactive Key Caching)
    # Allow PMK cache to be shared opportunistically among configured interfaces
    # and BSSes (i.e., all configurations within a single hostapd process).
    # 0 = disabled (default)
    # 1 = enabled
    #okc=1
    
    
    ##### IEEE 802.11r configuration ##############################################
    
    # Mobility Domain identifier (dot11FTMobilityDomainID, MDID)
    # MDID is used to indicate a group of APs (within an ESS, i.e., sharing the
    # same SSID) between which a STA can use Fast BSS Transition.
    # 2-octet identifier as a hex string.
    #mobility_domain=a1b2
    
    # PMK-R0 Key Holder identifier (dot11FTR0KeyHolderID)
    # 1 to 48 octet identifier.
    # This is configured with nas_identifier (see RADIUS client section above).
    
    # Default lifetime of the PMK-RO in minutes; range 1..65535
    # (dot11FTR0KeyLifetime)
    #r0_key_lifetime=10000
    
    # PMK-R1 Key Holder identifier (dot11FTR1KeyHolderID)
    # 6-octet identifier as a hex string.
    #r1_key_holder=000102030405
    
    # Reassociation deadline in time units (TUs / 1.024 ms; range 1000..65535)
    # (dot11FTReassociationDeadline)
    #reassociation_deadline=1000
    
    # List of R0KHs in the same Mobility Domain
    # format: <MAC address> <NAS Identifier> <128-bit key as hex string>
    # This list is used to map R0KH-ID (NAS Identifier) to a destination MAC
    # address when requesting PMK-R1 key from the R0KH that the STA used during the
    # Initial Mobility Domain Association.
    #r0kh=02:01:02:03:04:05 r0kh-1.example.com 000102030405060708090a0b0c0d0e0f
    #r0kh=02:01:02:03:04:06 r0kh-2.example.com 00112233445566778899aabbccddeeff
    # And so on.. One line per R0KH.
    
    # List of R1KHs in the same Mobility Domain
    # format: <MAC address> <R1KH-ID> <128-bit key as hex string>
    # This list is used to map R1KH-ID to a destination MAC address when sending
    # PMK-R1 key from the R0KH. This is also the list of authorized R1KHs in the MD
    # that can request PMK-R1 keys.
    #r1kh=02:01:02:03:04:05 02:11:22:33:44:55 000102030405060708090a0b0c0d0e0f
    #r1kh=02:01:02:03:04:06 02:11:22:33:44:66 00112233445566778899aabbccddeeff
    # And so on.. One line per R1KH.
    
    # Whether PMK-R1 push is enabled at R0KH
    # 0 = do not push PMK-R1 to all configured R1KHs (default)
    # 1 = push PMK-R1 to all configured R1KHs whenever a new PMK-R0 is derived
    #pmk_r1_push=1
    
    ##### Neighbor table ##########################################################
    # Maximum number of entries kept in AP table (either for neigbor table or for
    # detecting Overlapping Legacy BSS Condition). The oldest entry will be
    # removed when adding a new entry that would make the list grow over this
    # limit. Note! WFA certification for IEEE 802.11g requires that OLBC is
    # enabled, so this field should not be set to 0 when using IEEE 802.11g.
    # default: 255
    #ap_table_max_size=255
    
    # Number of seconds of no frames received after which entries may be deleted
    # from the AP table. Since passive scanning is not usually performed frequently
    # this should not be set to very small value. In addition, there is no
    # guarantee that every scan cycle will receive beacon frames from the
    # neighboring APs.
    # default: 60
    #ap_table_expiration_time=3600
    
    
    ##### Wi-Fi Protected Setup (WPS) #############################################
    
    # WPS state
    # 0 = WPS disabled (default)
    # 1 = WPS enabled, not configured
    # 2 = WPS enabled, configured
    #wps_state=2
    
    # AP can be configured into a locked state where new WPS Registrar are not
    # accepted, but previously authorized Registrars (including the internal one)
    # can continue to add new Enrollees.
    #ap_setup_locked=1
    
    # Universally Unique IDentifier (UUID; see RFC 4122) of the device
    # This value is used as the UUID for the internal WPS Registrar. If the AP
    # is also using UPnP, this value should be set to the device's UPnP UUID.
    # If not configured, UUID will be generated based on the local MAC address.
    #uuid=12345678-9abc-def0-1234-56789abcdef0
    
    # Note: If wpa_psk_file is set, WPS is used to generate random, per-device PSKs
    # that will be appended to the wpa_psk_file. If wpa_psk_file is not set, the
    # default PSK (wpa_psk/wpa_passphrase) will be delivered to Enrollees. Use of
    # per-device PSKs is recommended as the more secure option (i.e., make sure to
    # set wpa_psk_file when using WPS with WPA-PSK).
    
    # When an Enrollee requests access to the network with PIN method, the Enrollee
    # PIN will need to be entered for the Registrar. PIN request notifications are
    # sent to hostapd ctrl_iface monitor. In addition, they can be written to a
    # text file that could be used, e.g., to populate the AP administration UI with
    # pending PIN requests. If the following variable is set, the PIN requests will
    # be written to the configured file.
    #wps_pin_requests=/var/run/hostapd_wps_pin_requests
    
    # Device Name
    # User-friendly description of device; up to 32 octets encoded in UTF-8
    #device_name=Wireless AP
    
    # Manufacturer
    # The manufacturer of the device (up to 64 ASCII characters)
    #manufacturer=Company
    
    # Model Name
    # Model of the device (up to 32 ASCII characters)
    #model_name=WAP
    
    # Model Number
    # Additional device description (up to 32 ASCII characters)
    #model_number=123
    
    # Serial Number
    # Serial number of the device (up to 32 characters)
    #serial_number=12345
    
    # Primary Device Type
    # Used format: <categ>-<OUI>-<subcateg>
    # categ = Category as an integer value
    # OUI = OUI and type octet as a 4-octet hex-encoded value; 0050F204 for
    #       default WPS OUI
    # subcateg = OUI-specific Sub Category as an integer value
    # Examples:
    #   1-0050F204-1 (Computer / PC)
    #   1-0050F204-2 (Computer / Server)
    #   5-0050F204-1 (Storage / NAS)
    #   6-0050F204-1 (Network Infrastructure / AP)
    #device_type=6-0050F204-1
    
    # OS Version
    # 4-octet operating system version number (hex string)
    #os_version=01020300
    
    # Config Methods
    # List of the supported configuration methods
    # Available methods: usba ethernet label display ext_nfc_token int_nfc_token
    #    nfc_interface push_button keypad virtual_display physical_display
    #    virtual_push_button physical_push_button
    #config_methods=label virtual_display virtual_push_button keypad
    
    # Static access point PIN for initial configuration and adding Registrars
    # If not set, hostapd will not allow external WPS Registrars to control the
    # access point. The AP PIN can also be set at runtime with hostapd_cli
    # wps_ap_pin command. Use of temporary (enabled by user action) and random
    # AP PIN is much more secure than configuring a static AP PIN here. As such,
    # use of the ap_pin parameter is not recommended if the AP device has means for
    # displaying a random PIN.
    #ap_pin=12345670
    
    # Skip building of automatic WPS credential
    # This can be used to allow the automatically generated Credential attribute to
    # be replaced with pre-configured Credential(s).
    #skip_cred_build=1
    
    # Additional Credential attribute(s)
    # This option can be used to add pre-configured Credential attributes into M8
    # message when acting as a Registrar. If skip_cred_build=1, this data will also
    # be able to override the Credential attribute that would have otherwise been
    # automatically generated based on network configuration. This configuration
    # option points to an external file that much contain the WPS Credential
    # attribute(s) as binary data.
    #extra_cred=hostapd.cred
    
    # Credential processing
    #   0 = process received credentials internally (default)
    #   1 = do not process received credentials; just pass them over ctrl_iface to
    #    external program(s)
    #   2 = process received credentials internally and pass them over ctrl_iface
    #    to external program(s)
    # Note: With wps_cred_processing=1, skip_cred_build should be set to 1 and
    # extra_cred be used to provide the Credential data for Enrollees.
    #
    # wps_cred_processing=1 will disabled automatic updates of hostapd.conf file
    # both for Credential processing and for marking AP Setup Locked based on
    # validation failures of AP PIN. An external program is responsible on updating
    # the configuration appropriately in this case.
    #wps_cred_processing=0
    
    # AP Settings Attributes for M7
    # By default, hostapd generates the AP Settings Attributes for M7 based on the
    # current configuration. It is possible to override this by providing a file
    # with pre-configured attributes. This is similar to extra_cred file format,
    # but the AP Settings attributes are not encapsulated in a Credential
    # attribute.
    #ap_settings=hostapd.ap_settings
    
    # WPS UPnP interface
    # If set, support for external Registrars is enabled.
    #upnp_iface=br0
    
    # Friendly Name (required for UPnP)
    # Short description for end use. Should be less than 64 characters.
    #friendly_name=WPS Access Point
    
    # Manufacturer URL (optional for UPnP)
    #manufacturer_url=http://www.example.com/
    
    # Model Description (recommended for UPnP)
    # Long description for end user. Should be less than 128 characters.
    #model_description=Wireless Access Point
    
    # Model URL (optional for UPnP)
    #model_url=http://www.example.com/model/
    
    # Universal Product Code (optional for UPnP)
    # 12-digit, all-numeric code that identifies the consumer package.
    #upc=123456789012
    
    ##### Wi-Fi Direct (P2P) ######################################################
    
    # Enable P2P Device management
    #manage_p2p=1
    
    # Allow cross connection
    #allow_cross_connection=1
    
    ##### Multiple BSSID support ##################################################
    #
    # Above configuration is using the default interface (wlan#, or multi-SSID VLAN
    # interfaces). Other BSSIDs can be added by using separator 'bss' with
    # default interface name to be allocated for the data packets of the new BSS.
    #
    # hostapd will generate BSSID mask based on the BSSIDs that are
    # configured. hostapd will verify that dev_addr & MASK == dev_addr. If this is
    # not the case, the MAC address of the radio must be changed before starting
    # hostapd (ifconfig wlan0 hw ether <MAC addr>). If a BSSID is configured for
    # every secondary BSS, this limitation is not applied at hostapd and other
    # masks may be used if the driver supports them (e.g., swap the locally
    # administered bit)
    #
    # BSSIDs are assigned in order to each BSS, unless an explicit BSSID is
    # specified using the 'bssid' parameter.
    # If an explicit BSSID is specified, it must be chosen such that it:
    # - results in a valid MASK that covers it and the dev_addr
    # - is not the same as the MAC address of the radio
    # - is not the same as any other explicitly specified BSSID
    #
    # Please note that hostapd uses some of the values configured for the first BSS
    # as the defaults for the following BSSes. However, it is recommended that all
    # BSSes include explicit configuration of all relevant configuration items.
    #
    #bss=wlan0_0
    #ssid=test2
    # most of the above items can be used here (apart from radio interface specific
    # items, like channel)
    
    #bss=wlan0_1
    #bssid=00:13:10:95:fe:0b
    # ...
    The following lines should be edited in the conf file like so (I have posted my conf file above which has all the settings I have mentioned here):

    The wirless interface name:
    Code:
    interface=wlan0
    Leave this one as it it:
    Code:
    driver=nl80211
    Some more lines that are to be edited:

    Code:
    ssid=test
    hw_mode=g
    channel=1
    The dhcp-server3 has some serious bugs if interfaces are on hotplug mode (if ubuntu desktop network manager is used to configure NIC's)

    So, instead dnsmasq is a good option:

    Code:
    Sudo apt-get install dnsmasq
    Open dnsmaq conf file:

    sudo nano /etc/dnsmasq.conf

    and add this to the end of the file:

    Code:
    interface=wlan0
    dhcp-range=net:wlan0,192.168.0.100,192.168.0.150,255.255.255.0,1440m
    dhcp-option=wlan0,3,192.168.0.1
    dhcp-option=wlan0,6,208.67.222.222,208.67.220.220
    As dnsmasq starts during boot, it might cause trouble if you are connected to a network that already has a dhcp server. So we need to prevent dnsmasq starting at boot:

    Install chkconfig package:

    Code:
    sudo apt-get install chkconfig
    This command will show run levels for dnsmasq:

    Code:
    sudo chkconfig --list | grep dnsmasq
    Turn off dnsmasq in all levels:

    Code:
    sudo chkconfig  dnsmasq off
    None of the above mentioned packages are going to start up at boot up, so we need to have a script that will bring ubuntu access point up:

    So here is the customized version of the script that I got at ubuntu forums:

    Code:
    #!/bin/bash
    
    # broadcasting interface
    BROADCAST="wlan0"
    
    # receiving interface broadcast is connected to
    RECEIVE="eth0"
    
    if [[ $1 == "-0" || $1 == "--start" ]]
     then
     ## start hostapd
     echo "Starting hostapd"
     echo "    You can view the log at /var/log/hostapd.log"
    
     # launch hostapd daemon
     hostapd -d /etc/hostapd/hostapd.conf > /var/log/hostapd.log &
    
     ## start dhcp server
     echo "Starting dnsmasq"
    
     # set IP address
     ifconfig $BROADCAST 192.168.0.1
     sleep 2
    
     # launch dhcpd3 daemon
     # echo "INTERFACES=$BROADCAST" > /etc/default/dhcp
     # dhcpd3 $BROADCAST &
     dnsmasq
    
    elif [[ $1 == "-1" || $1 == "--stop" ]]
     then
     # send signal 2 to hostapd and dhcpd3
     killall -2 hostapd  dnsmasq
    
    elif [[ $1 == "-2" || $1 == "--ics" ]]
     then
     # create iptables rules
     iptables -A FORWARD -i $RECEIVE -o $BROADCAST -s 192.168.0.1/24 -m conntrack --ctstate NEW -j ACCEPT
     iptables -A FORWARD -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT
     iptables -A POSTROUTING -t nat -j MASQUERADE
    
     # set kernel variable(s)
     echo 1 > /proc/sys/net/ipv4/conf/all/forwarding
    
     # edit kernel configuration
     cp /etc/sysctl.conf /etc/sysctl.conf.ap_ctl
     echo "net.ipv4.conf.default.forwarding=1" >> /etc/sysctl.conf
     echo "net.ipv4.conf.all.forwarding=1" >> /etc/sysctl.conf
    
     # restart networking
     /etc/init.d/networking restart
    
    elif [[ $1 == "-3" || $1 == "--noics" ]]
     then
     # remove iptables rules
     iptables -D FORWARD 1
     iptables -D FORWARD 1
    
     # set kernel variable(s)
     echo 0 > /proc/sys/net/ipv4/conf/all/forwarding
    
     # revert kernel configuration
     mv -i /etc/sysctl.conf.ap_ctl /etc/sysctl.conf
    
     # restart networking
     /etc/init.d/networking restart
    
    else
     echo $0
     echo "A tool to manage hostapd and dhcpd3"
     echo "Usage:"
     echo "    -0 --start    Start hostapd and dhcpd3"
     echo "    -1 --stop    Stop hostapd and dhcpd3 with signal 2"
     echo "    -2 --ics    Activate internet connection sharing"
     echo "            between specified interfaces"
     echo "    -3 --noics    Undo internet connection sharing settings"
    fi
    
    exit 0
    save it as ap_ctl in /usr/bin:

    Code:
    sudo nano /usr/bin/ap_ctl
    paste the contents and save it.

    Make the script executable:

    Code:
    sudo chmod +x /usr/bin/ap_ctl
    To run the script run these following commands:

    Code:
    sudo ap_ctl --start
    sudo ap_ctl --ics
    That's it, it should work now.

    to stop it:

    Code:
    sudo ap_ctl --stop
    Please post your suggestions in the comments. If you have any ideas to improve the solution also post them here. It should also work on many other wireless cards too. If it worked on the other wireless cards mention it here, so that I can make a list of cards on which it worked.

    References:
    http://ubuntuforums.org/showthread.php?t=1488953
    http://acx100.erley.org/stable.html
    http://wireless.kernel.org/en/users/...direct=RTFM-AP
    Last edited by nixnotwin; January 14th, 2011 at 04:16 PM.

  2. #2
    Join Date
    Jun 2010
    Location
    Florida
    Beans
    30
    Distro
    Ubuntu 10.10 Maverick Meerkat

    Re: Ubuntu netbook as a wireless access-point and router

    Wow This Is Extremely Helpful Thanks Man I really appreciate it...

  3. #3
    Join Date
    Feb 2011
    Beans
    1

    Re: Ubuntu netbook as a wireless access-point and router

    i have usb adapter wirelass and i want to make hot spot on my home and useing internet with my ipod too.

    on windows is a soft connectify.me but on linux i can`t find analog software or document to how to create it.

    pleas ppl help me.

  4. #4
    Join Date
    Jun 2010
    Location
    Florida
    Beans
    30
    Distro
    Ubuntu 10.10 Maverick Meerkat

    Re: Ubuntu netbook as a wireless access-point and router

    Hmmm, Im sure if you find the right driver for your USB Wireless Adapter you can follow these instructions but you need to check if your wireless adapter supports AP mode or master mode to create a wireless access point.

    Heres some commands to get you started:

    run:
    Code:
    sudo apt-get install iw
    To get iw tools to figure out if your card supports AP or Master Mode

    Also:
    Code:
    sudo apt-get install wireless-tools
    Also helpful in the future of setting to master mode if needed (Hostapd sets the adapter to AP or Master mode automatically)


    then run:
    Code:
    sudo iw list
    When you run that if you see than it lists your adapter as having the mode: AP Mode then you are good to roll

    Also it may be helpful to post your kind of wireless adapter here so we can help you further....

  5. #5
    Join Date
    Aug 2008
    Beans
    2

    Re: Ubuntu netbook as a wireless access-point and router

    This is great,

    It's exactly what I was looking for and best of all it works well.

    I'm not as proficient in Linux / Networks as I used to be and needed to setup an access point for a Tablet computer (which is WiFi) via my ASUS Netbook.

    The only thing that I needed to do is to comment out the WMM statements in the .conf file and I was up and running.

    Thank you very much for your posting.

    Doug!

  6. #6
    Join Date
    Sep 2006
    Beans
    Hidden!

    Re: Ubuntu netbook as a wireless access-point and router

    Thanks.

    Got it pseudo-working with
    Code:
    ID 07d1:3c03 D-Link System DWL-G122 802.11g Adapter [ralink rt73]
    One remark is that chkconfig is moot. You get a bunch of errors of the type:
    Code:
    The script you are attempting to invoke has been converted to an Upstart
    job, but lsb-header is not supported for Upstart jobs.
    Use this instead:
    Code:
    sudo update-rc.d -f dnsmasq remove
    I guess could be also done with a GUI: bum.

    The rt73 driver is also part of mac80211 so nl80211 stays.
    Configured WPA2-PSK with a passphrase as well.
    Had to change broadcast IP due to IP collision. Network is up and running, though no internet connection yet (probably other network issues). Will investigate further.

  7. #7
    Join Date
    Oct 2010
    Beans
    41
    Distro
    Ubuntu 12.04 Precise Pangolin

    Re: Ubuntu netbook as a wireless access-point and router

    Hello if anybody in there.
    I tried the instructions with my laptop. It uses ath5k drivers but connection establishes good. I can see the network from another computer and connect to it (I'm trying to share a network from laptop to netbook). But when it comes to dhcp, I'm stuck. The netbook utilises debian and when I issue "dhclient wlan0" it just sends some DHCPREQUESTs and DHCPDISCOVERs with some intervals and ends up with no connection.

    So I think there is some dnsmasq issue.

    Here is my "ifconfig" for laptop (AP):
    Code:
    eth0      Link encap:Ethernet  HWaddr 00:1d:92:51:21:e6  
              inet addr:10.34.199.228  Bcast:10.34.199.255  Mask:255.255.255.0
              UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
              RX packets:312514 errors:0 dropped:0 overruns:0 frame:0
              TX packets:466383 errors:0 dropped:0 overruns:0 carrier:0
              collisions:0 txqueuelen:1000 
              RX bytes:33586527 (33.5 MB)  TX bytes:473915076 (473.9 MB)
              Interrupt:43 Base address:0x4000 
    
    lo        Link encap:Local Loopback  
              inet addr:127.0.0.1  Mask:255.0.0.0
              UP LOOPBACK RUNNING  MTU:16436  Metric:1
              RX packets:6568 errors:0 dropped:0 overruns:0 frame:0
              TX packets:6568 errors:0 dropped:0 overruns:0 carrier:0
              collisions:0 txqueuelen:0 
              RX bytes:734366 (734.3 KB)  TX bytes:734366 (734.3 KB)
    
    mon.wlan0 Link encap:UNSPEC  HWaddr 00-15-AF-86-9A-A9-00-00-00-00-00-00-00-00-00-00  
              UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
              RX packets:355 errors:0 dropped:0 overruns:0 frame:0
              TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
              collisions:0 txqueuelen:1000 
              RX bytes:25277 (25.2 KB)  TX bytes:0 (0.0 B)
    
    wlan0     Link encap:Ethernet  HWaddr 00:15:af:86:9a:a9  
              inet addr:192.168.0.1  Bcast:192.168.0.255  Mask:255.255.255.0
              UP BROADCAST MULTICAST  MTU:1500  Metric:1
              RX packets:66 errors:0 dropped:0 overruns:0 frame:0
              TX packets:165 errors:0 dropped:0 overruns:0 carrier:0
              collisions:0 txqueuelen:1000 
              RX bytes:14472 (14.4 KB)  TX bytes:33481 (33.4 KB)
    By the way where did you found these settings to apply for /etc/dnsmasq.conf and why do you need to change a wlan0 IP adress in starting script? Maybe you can point out for some documentation? (I have googled, really, but can't find anything appropriate)

  8. #8
    Join Date
    May 2011
    Beans
    3

    Re: Ubuntu netbook as a wireless access-point and router

    i have this erors when try to compile:
    ../src/crypto/tls_openssl.c:1554: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:1555: error: ‚SSL_FILETYPE_ASN1‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:1564: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:1565: error: ‚SSL_FILETYPE_PEM‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c: At top level:
    ../src/crypto/tls_openssl.c:1581: error: expected ‚)‚ before ‚*‚ token
    ../src/crypto/tls_openssl.c:1616: error: expected ‚)‚ before ‚*‚ token
    ../src/crypto/tls_openssl.c:1691: error: expected ‚)‚ before ‚*‚ token
    ../src/crypto/tls_openssl.c:1721: error: expected ‚)‚ before ‚*‚ token
    ../src/crypto/tls_openssl.c: In function ‚tls_connection_private_key‚:
    ../src/crypto/tls_openssl.c:1877: error: ‚SSL_CTX‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:1877: error: ‚ssl_ctx‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:1891: warning: implicit declaration of function ‚SSL_CTX_set_default_passwd_cb‚
    ../src/crypto/tls_openssl.c:1892: warning: implicit declaration of function ‚SSL_CTX_set_default_passwd_cb_userdata‚
    ../src/crypto/tls_openssl.c:1896: warning: implicit declaration of function ‚SSL_use_PrivateKey_ASN1‚
    ../src/crypto/tls_openssl.c:1896: error: ‚EVP_PKEY_RSA‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:1896: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:1909: error: ‚EVP_PKEY_DSA‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:1909: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:1922: warning: implicit declaration of function ‚SSL_use_RSAPrivateKey_ASN1‚
    ../src/crypto/tls_openssl.c:1922: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:1934: warning: implicit declaration of function ‚tls_read_pkcs12_blob‚
    ../src/crypto/tls_openssl.c:1934: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:1947: warning: implicit declaration of function ‚SSL_use_PrivateKey_file‚
    ../src/crypto/tls_openssl.c:1947: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:1948: error: ‚SSL_FILETYPE_ASN1‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:1959: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:1960: error: ‚SSL_FILETYPE_PEM‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:1975: warning: implicit declaration of function ‚tls_read_pkcs12‚
    ../src/crypto/tls_openssl.c:1975: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:1983: warning: implicit declaration of function ‚tls_cryptoapi_cert‚
    ../src/crypto/tls_openssl.c:1983: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:1996: warning: implicit declaration of function ‚ERR_clear_error‚
    ../src/crypto/tls_openssl.c:2003: warning: implicit declaration of function ‚SSL_check_private_key‚
    ../src/crypto/tls_openssl.c:2003: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c: At top level:
    ../src/crypto/tls_openssl.c:2014: error: expected ‚)‚ before ‚*‚ token
    ../src/crypto/tls_openssl.c: In function ‚tls_connection_dh‚:
    ../src/crypto/tls_openssl.c:2068: error: ‚DH‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:2068: error: ‚dh‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:2069: error: ‚BIO‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:2069: error: ‚bio‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:2077: warning: implicit declaration of function ‚BIO_new_file‚
    ../src/crypto/tls_openssl.c:2080: warning: format ‚%s‚ expects type ‚char *‚, but argument 4 has type ‚int‚
    ../src/crypto/tls_openssl.c:2083: warning: implicit declaration of function ‚PEM_read_bio_DHparams‚
    ../src/crypto/tls_openssl.c:2087: error: ‚DSA‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:2087: error: ‚dsa‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:2090: warning: format ‚%s‚ expects type ‚char *‚, but argument 4 has type ‚int‚
    ../src/crypto/tls_openssl.c:2094: warning: implicit declaration of function ‚PEM_read_bio_DSAparams‚
    ../src/crypto/tls_openssl.c:2099: warning: format ‚%s‚ expects type ‚char *‚, but argument 4 has type ‚int‚
    ../src/crypto/tls_openssl.c:2104: warning: implicit declaration of function ‚DSA_dup_DH‚
    ../src/crypto/tls_openssl.c:2105: warning: implicit declaration of function ‚DSA_free‚
    ../src/crypto/tls_openssl.c:2120: warning: implicit declaration of function ‚SSL_set_tmp_dh‚
    ../src/crypto/tls_openssl.c:2120: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:2123: warning: format ‚%s‚ expects type ‚char *‚, but argument 4 has type ‚int‚
    ../src/crypto/tls_openssl.c:2124: warning: implicit declaration of function ‚DH_free‚
    ../src/crypto/tls_openssl.c: At top level:
    ../src/crypto/tls_openssl.c:2133: error: expected ‚)‚ before ‚*‚ token
    ../src/crypto/tls_openssl.c: In function ‚tls_connection_get_keys‚:
    ../src/crypto/tls_openssl.c:2210: error: ‚SSL‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:2210: error: ‚ssl‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:2214: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:2222: error: ‚SSL3_RANDOM_SIZE‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c: In function ‚openssl_handshake‚:
    ../src/crypto/tls_openssl.c:2250: warning: implicit declaration of function ‚BIO_write‚
    ../src/crypto/tls_openssl.c:2250: error: ‚struct tls_connection‚ has no member named ‚ssl_in‚
    ../src/crypto/tls_openssl.c:2259: warning: implicit declaration of function ‚SSL_accept‚
    ../src/crypto/tls_openssl.c:2259: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:2261: warning: implicit declaration of function ‚SSL_connect‚
    ../src/crypto/tls_openssl.c:2261: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:2263: warning: implicit declaration of function ‚SSL_get_error‚
    ../src/crypto/tls_openssl.c:2263: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:2264: error: ‚SSL_ERROR_WANT_READ‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:2267: error: ‚SSL_ERROR_WANT_WRITE‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:2272: error: ‚struct tls_connection‚ has no member named ‚failed‚
    ../src/crypto/tls_openssl.c:2277: warning: implicit declaration of function ‚BIO_ctrl_pending‚
    ../src/crypto/tls_openssl.c:2277: error: ‚struct tls_connection‚ has no member named ‚ssl_out‚
    ../src/crypto/tls_openssl.c:2283: warning: implicit declaration of function ‚BIO_reset‚
    ../src/crypto/tls_openssl.c:2283: error: ‚struct tls_connection‚ has no member named ‚ssl_out‚
    ../src/crypto/tls_openssl.c:2289: warning: implicit declaration of function ‚BIO_read‚
    ../src/crypto/tls_openssl.c:2289: error: ‚struct tls_connection‚ has no member named ‚ssl_out‚
    ../src/crypto/tls_openssl.c:2294: error: ‚struct tls_connection‚ has no member named ‚ssl_out‚
    ../src/crypto/tls_openssl.c: In function ‚openssl_get_appl_data‚:
    ../src/crypto/tls_openssl.c:2317: warning: implicit declaration of function ‚SSL_read‚
    ../src/crypto/tls_openssl.c:2317: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:2320: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:2321: error: ‚SSL_ERROR_WANT_READ‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:2322: error: ‚SSL_ERROR_WANT_WRITE‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c: In function ‚openssl_connection_handshake‚:
    ../src/crypto/tls_openssl.c:2356: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c: In function ‚tls_connection_encrypt‚:
    ../src/crypto/tls_openssl.c:2392: error: ‚struct tls_connection‚ has no member named ‚ssl_in‚
    ../src/crypto/tls_openssl.c:2393: error: ‚struct tls_connection‚ has no member named ‚ssl_out‚
    ../src/crypto/tls_openssl.c:2397: warning: implicit declaration of function ‚SSL_write‚
    ../src/crypto/tls_openssl.c:2397: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:2408: error: ‚struct tls_connection‚ has no member named ‚ssl_out‚
    ../src/crypto/tls_openssl.c: In function ‚tls_connection_decrypt‚:
    ../src/crypto/tls_openssl.c:2429: error: ‚struct tls_connection‚ has no member named ‚ssl_in‚
    ../src/crypto/tls_openssl.c:2436: error: ‚struct tls_connection‚ has no member named ‚ssl_out‚
    ../src/crypto/tls_openssl.c:2451: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c: In function ‚tls_connection_resumed‚:
    ../src/crypto/tls_openssl.c:2466: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c: In function ‚tls_connection_set_cipher_list‚:
    ../src/crypto/tls_openssl.c:2477: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:2516: warning: implicit declaration of function ‚SSL_set_cipher_list‚
    ../src/crypto/tls_openssl.c:2516: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c: In function ‚tls_get_cipher‚:
    ../src/crypto/tls_openssl.c:2530: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:2533: warning: implicit declaration of function ‚SSL_get_cipher‚
    ../src/crypto/tls_openssl.c:2533: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c: In function ‚tls_connection_enable_workaround‚:
    ../src/crypto/tls_openssl.c:2545: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:2545: error: ‚SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c: In function ‚tls_connection_get_failed‚:
    ../src/crypto/tls_openssl.c:2581: error: ‚struct tls_connection‚ has no member named ‚failed‚
    ../src/crypto/tls_openssl.c: In function ‚tls_connection_get_read_alerts‚:
    ../src/crypto/tls_openssl.c:2589: error: ‚struct tls_connection‚ has no member named ‚read_alerts‚
    ../src/crypto/tls_openssl.c: In function ‚tls_connection_get_write_alerts‚:
    ../src/crypto/tls_openssl.c:2597: error: ‚struct tls_connection‚ has no member named ‚write_alerts‚
    ../src/crypto/tls_openssl.c: In function ‚tls_connection_set_params‚:
    ../src/crypto/tls_openssl.c:2612: warning: format ‚%s‚ expects type ‚char *‚, but argument 4 has type ‚int‚
    ../src/crypto/tls_openssl.c: In function ‚tls_global_set_params‚:
    ../src/crypto/tls_openssl.c:2675: error: ‚SSL_CTX‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:2675: error: ‚ssl_ctx‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:2680: warning: format ‚%s‚ expects type ‚char *‚, but argument 4 has type ‚int‚
    ../src/crypto/tls_openssl.c:2683: warning: implicit declaration of function ‚tls_global_ca_cert‚
    ../src/crypto/tls_openssl.c:2686: warning: implicit declaration of function ‚tls_global_client_cert‚
    ../src/crypto/tls_openssl.c:2689: warning: implicit declaration of function ‚tls_global_private_key‚
    ../src/crypto/tls_openssl.c:2693: warning: implicit declaration of function ‚tls_global_dh‚
    ../src/crypto/tls_openssl.c: In function ‚tls_connection_get_keyblock_size‚:
    ../src/crypto/tls_openssl.c:2706: error: expected ‚=‚, ‚,‚, ‚;‚, ‚asm‚ or ‚__attribute__‚ before ‚*‚ token
    ../src/crypto/tls_openssl.c:2706: error: ‚c‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:2707: error: expected ‚=‚, ‚,‚, ‚;‚, ‚asm‚ or ‚__attribute__‚ before ‚*‚ token
    ../src/crypto/tls_openssl.c:2707: error: ‚h‚ undeclared (first use in this function)
    ../src/crypto/tls_openssl.c:2709: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:2710: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:2711: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:2712: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:2715: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:2719: error: ‚struct tls_connection‚ has no member named ‚ssl‚
    ../src/crypto/tls_openssl.c:2722: warning: implicit declaration of function ‚EVP_CIPHER_key_length‚
    ../src/crypto/tls_openssl.c:2723: warning: implicit declaration of function ‚EVP_MD_size‚
    ../src/crypto/tls_openssl.c:2724: warning: implicit declaration of function ‚EVP_CIPHER_iv_length‚
    make: *** [../src/crypto/tls_openssl.o] Error 1

    using: ubuntu 10.04; hostapd-0.7.3.tar.gz; D-link DWL-G520 A:1
    Last edited by w24kw; May 20th, 2011 at 10:46 AM. Reason: news

  9. #9
    Join Date
    Jun 2009
    Location
    Bangladesh
    Beans
    5
    Distro
    Ubuntu 11.04 Natty Narwhal

    Re: Ubuntu netbook as a wireless access-point and router

    Hi nixnotwin,
    I followed your instructions as:
    1. installed hostapd (sudo apt-get install hostapd)
    2. installed libnl-dev (sudo apt-get install libnl-dev)
    3. then created hostapd.conf (/etc/hostapd/hostapd.conf)
    4. installed dnsmasq (sudo apt-get install dnsmasq)
    5. pasted the code in /etc/dnsmasq.conf
    6. installed chkconfig
    7. turned off dnsmasq in all levels
    8. created the script ap_ctl and made executable

    Here is the output of ap_ctl --start
    Starting hostapd
    You can view the log at /var/log/hostapd.log
    Starting dnsmasq
    SIOCSIFADDR: No such device
    wlan0: ERROR while getting interface flags: No such device
    ioctl[SIOCGIFFLAGS]: No such device
    rmdir[ctrl_interface]: No such file or directory
    Output of ap_ctl --ics

    * Running /etc/init.d/networking restart is deprecated because it may not enable again some interfaces
    * Reconfiguring network interfaces... Ignoring unknown interface ppp0=ppp0.
    [ OK ]
    Output of ifconfig
    eth0 Link encap:Ethernet HWaddr 00:25:64:63:1a:55
    UP BROADCAST MULTICAST MTU:1500 Metric:1
    RX packets:0 errors:0 dropped:0 overruns:0 frame:0
    TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
    collisions:0 txqueuelen:1000
    RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
    Interrupt:18

    eth1 Link encap:Ethernet HWaddr 70:1a:04:34:03:d3
    inet6 addr: fe80::721a:4ff:fe34:3d3/64 Scope:Link
    UP BROADCAST MULTICAST MTU:1500 Metric:1
    RX packets:0 errors:0 dropped:0 overruns:0 frame:0
    TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
    collisions:0 txqueuelen:1000
    RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
    Interrupt:17 Base address:0xc000

    lo Link encap:Local Loopback
    inet addr:127.0.0.1 Mask:255.0.0.0
    inet6 addr: ::1/128 Scope:Host
    UP LOOPBACK RUNNING MTU:16436 Metric:1
    RX packets:3166 errors:0 dropped:0 overruns:0 frame:0
    TX packets:3166 errors:0 dropped:0 overruns:0 carrier:0
    collisions:0 txqueuelen:0
    RX bytes:397248 (397.2 KB) TX bytes:397248 (397.2 KB)

    ppp0 Link encapoint-to-Point Protocol
    inet addr:10.53.75.101 P-t-P:10.64.64.64 Mask:255.255.255.255
    UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
    RX packets:42448 errors:0 dropped:0 overruns:0 frame:0
    TX packets:44495 errors:0 dropped:0 overruns:0 carrier:0
    collisions:0 txqueuelen:3
    RX bytes:25961354 (25.9 MB) TX bytes:7718408 (7.7 MB)
    What should I do?
    Last edited by tareq1988; May 31st, 2011 at 06:27 PM. Reason: updating

  10. #10
    Join Date
    Oct 2011
    Beans
    3

    Re: Ubuntu netbook as a wireless access-point and router

    configuring Asus Wireless laptop as Access point and As well as station
    Hi friends,

    I want to make my wireless interface laptop as client as well as wireless AP for other wifi device(Laptop or mobile etc.)
    I am using HostApd, Eth9K driver, and dhcp. etc... on ubuntu..
    I had used same Hostapd dnsmasq and ap_ctl but not able to browse on mobile....

    Please help me here...
    Thanks in Advance.

Page 1 of 2 12 LastLast

Tags for this Thread

Bookmarks

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •